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ABSTRACT  
This paper addresses the topics of a) human-machine interaction and communication; b) comprehension; 
and c) joint learning/training. The rationale behind our approach to autonomy is our belief that both true 
autonomy in non-trivial applications and high-quality human-machine interaction can be supported only if 
the machine has the capability of understanding the world in which it operates and can interact with its 
human collaborators in the manner that is natural to the them.  

1.0 INTRODUCTION 

Autonomous artificial agents will reach their full potential when human members of their teams will be able 
to rely on them not only to carry out their assigned tasks but also to interact with them in ways similar to 
human-human interaction. The agent’s ability to communicate with humans using natural language is a core 
prerequisite for attaining this goal. Human-level language understanding and generation capabilities require 
much more than the ability to match input text strings with stored or computed stock responses. Humans can 
explain, learn, anticipate, revise and adapt behavior (including communication-oriented behavior) in 
response to unforeseen circumstances, particular interlocutors and changing operational needs. This means 
that human-level language processing is strongly interdependent with general reasoning, perception and 
action capabilities. In order to approach human-level communication capability, language-endowed 
intelligent agents (LEIAs) must, therefore, model not only language per se. They must also model the world 
of their application domain, their past experiences, the situation at hand, their team members (both human 
and artificial), goals and actions associated with their team roles. A very important property of LEIAs is their 
ability to learn by instruction in natural language.  

In this paper, we first briefly outline the basics of the cognitive architecture environment, OntoAgent, that 
supports implementation of LEIAs. Then we describe two types of LEIAs built on the basis of OntoAgent: a) 
virtual patients used for training medical personnel and b) robotic members of human-robot teams engaged 
in the task of jointly assembling furniture.  

2.0 ONTOAGENT: THE ENVIRONMENT FOR DEVELOPING LEIAS 

Core capabilities of a simulated, embodied, language-endowed intelligent agent include: 

• behaving in a physiologically realistic manner 

• experiencing, interpreting and remembering its own mental, physical, and emotional states 

• communicating with people in natural language 

• learning through experience, reasoning, reading, and being told 
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• reasoning about its own plans and goals and those of its collaborators 

• managing its memory – including forgetting and consolidating memories 

• making decisions to further the plans that will fulfill its goals 

• collaborating with human and intelligent-agent colleagues  

In order to minimize development effort, maximize resource reuse, and avoid knowledge incompatibilities, 
all of these processes should be supported by an integrated knowledge substrate and a uniform knowledge 
representation language.  

In the OntoAgent cognitive architecture, all perceptual, general cognitive, and language processing 
capabilities rely on the same ontological substrate, the same organization of episodic memory, and the same 
approach to ontologically-grounded knowledge representation. The approach to recording knowledge and 
computing meaning was originally developed for natural language processing pursued outside of a full agent 
architecture [1]. but it has required no fundamental extensions to be applied to more inclusive aspects of 
agent modeling.  

Our computational cognitive modeling of LEIAs is a mature program of work that covers perception, 
reasoning and action – the typical pillars of cognitive architectures [2]. As Figure 1 shows, no matter which 
kinds of perceptual stimuli a LEIA receives, it must interpret them using its knowledge resources, which 
involves translating them from raw data streams into interpreted facts represented in its ontologically-
grounded knowledge bases. Types of stimuli include language input, bodily signals generated through 
physiological simulations, visual stimuli, and, in principle, other stimuli.1  

 

Figure 1. High-level view of OntoAgent architecture. 

Since raw data are interpreted into ontologically-grounded facts, it does not matter whether a robotic LEIA 
knows that it must hit a given nail because its human teammate said, “Hit the nail” or because the latter said, 
“Hit this” while pointing at the nail – either way, the meaning representation will be the same, and the LEIA 
can use this new knowledge for subsequent reasoning about action.  

                                                      
1 Language understanding and interoception were incorporated into LEIAs functioning as virtual patients in the Maryland 

Virtual Patient application [3]. Language understanding and robotic vision are currently being integrated into a robotic 
assistant [4]. 
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The LEIA’s knowledge representation language is a frame-based metalanguage in which concepts, or their 
instances, are described by properties. For example, an excerpt from the frame describing the event DRUG-
DEALING in the ontology is as follows2: 

 

DRUG-DEALING   

IS-A   VALUE      CRIMINAL-ACTIVITY    

AGENT   DEFAULT  CRIMINAL, DRUG-CARTEL                       

SEM   HUMAN                       

RELAXABLE-TO  SOCIAL-OBJECT    

THEME    DEFAULT ILLEGAL-DRUG    

INSTRUMENT  SEM   MONEY    

 … 

 
When a LEIA learns about or remembers a particular instance of DRUG-DEALING, the concept types are 
replaced by numerically indexed concept instances, but the overall frame-based knowledge structures look 
largely the same. For example, the meaning of the language input George Sanders sourced marijuana 
from a guy who lives in Phoenix will be analyzed by a LEIA (that has specific memories in its belief 
repository) as follows.3   

 

DRUG-DEALING-17           

 AGENT   HUMAN-233         

 THEME   MARIJUANA-21      

 BENEFICIARY  HUMAN-14        

 TIME   < FIND-ANCHOR-TIME ; A FUNCTION CALL TO DETERMINE ACTUAL TIME 

HUMAN-14 

 GENDER  MALE 

 HAS-NAME  GEORGE SANDERS 

CITY-812 

 HAS-NAME   PHOENIX 
                                                      

2 For details about the OntoAgent representational substrate see [5]; for the particulars of the design and content of the 
OntoAgent ontology, see, e.g., [6-8]. 

3 A large amount of material in this instance of text meaning representation (TMR) was omitted for presentation purposes. 
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HUMAN-233 

 HAS-GENDER  MALE 

 RESIDES-IN  CITY-812 

 

While in this paper we cannot detail all the features of this representation or the process that generates it4, we 
will comment on two particulars. First, when the verb source is used with a direct object indicating an illegal 
drug, the combination is compositionally understood to be an instance of the concept DRUG-DEALING. This 
disambiguation is supported by a combination of lexical and ontological knowledge. Second, when fillers of 
slots require further description, that description is provided in a co-referenced frame, meaning that there is 
no local reification – i.e., embedding of properties in slot fillers. E.g., HUMAN-233, who is the agent of 
DRUG-DEALING-17 (i.e., the seller of the drugs), has two additional known properties: HAS-GENDER MALE, 
and RESIDES-IN CITY-812 (i.e., the instance of the concept CITY corresponding to Phoenix in the LEIA’s 
episodic memory), which are listed in the frame headed by HUMAN-233. This ontologically-grounded 
metalanguage has many advantages for agent reasoning. Most importantly, it is unambiguous and the 
concepts referred to are described extensively in the ontology, which means that more knowledge is 
available for reasoning about language and the world. 

LEIAs overall – and their natural language understanding (NLU) capabilities in particular – are modeled 
according to principles of human-inspired cognitive modeling, e.g., [5]. The NLU modeling tenets 
particularly relevant to this discussion are:  

1. NLU in our approach follows the theory of Ontological Semantics [1] as augmented in subsequent 
writings (e.g., [10-12]). Under this approach, language understanding consists of translating input 
language strings into unambiguous, context-sensitive, ontologically-grounded text meaning 
representations (TMRs) that are well-suited to automatic reasoning.  

2. LEIAs analyze inputs using horizontal incrementality (processing words of input as they come in the 
language stream) and vertical incrementality (processing inputs to varying layers of depth, using a 
battery of text understanding methods).5 Horizontal incrementality models human behavior and has 
practical utility as well – e.g., it is necessary for endowing LEIAs with the ability to interrupt (for 
clarification or correction) and to begin to act before a long utterance has been completed.  

3. LEIAs operating in dialog contexts are not expected to arrive at a full and perfect interpretation of every 
input since even people do not do that. In real-life language use, many utterances do not make sense 
(e.g., thinking aloud while brainstorming), are irrelevant to the listener (e.g., a rant or a boring story at a 
cocktail party), or fall outside of the listener’s scope of knowledge or interest (e.g., a technical discussion 
about nuclear physics for most readers of this text). Instead of striving for a full interpretation, LEIAs 
focus on achieving an actionable interpretation of each utterance, meaning that they are seeking grounds 
for performing an action in response. This action may be not only physical or verbal, but also mental, 
such as remembering a vague interpretation and deciding not to work harder to concretize its meaning 
because it is outside of the agent’s scope of interest.  

4. Some inputs have both more generic and more specific readings, which is due to what some refer to as 
the semantics vs. pragmatics distinction. LEIAs first generate the former and then, if they deem further 
specification worth the effort, they pursue the latter. This underscores that not only is NLU itself a 
reasoning-heavy enterprise, agents must also reason about how to carry out the process within the scope 
of their overall functioning.  

                                                      
4 For details on the OntoAgent language processing module, OntoSem, see, e.g., [9]. 
5 Of course, if an application is not time-sensitive, processing subsentential fragments can be skipped. 



Two Types of Autonomous, Language Endowed                                                                  
Learning Agents for Human Autonomy Teaming 

STO-MP-HFM-300 12 - 5 

5. The LEIA’s lexicon includes more kinds of knowledge to cover more linguistic phenomena (ellipsis, 
indirect speech acts, non-literal language, etc.) than do most lexicons. This is not only because we 
believe that people actually have and use such knowledge in processing language, but also because 
anchoring treatments of linguistic phenomena in the lexicon represents good practice in knowledge 
engineering as it helps to keep strict track of how declarative knowledge elements interact with 
processing modules.  

 

Modeling NLU in LEIAs involves theory-based feature engineering, i.e., coming up with an inventory of 
properties (parameters) and their value sets to reflect aspects of context. So, the layers of context we will 
discuss involve different types of feature values accessed from different sources or computed in different 
ways. Note that the inventory of parameters is independently motivated by theoretical considerations – it is 
not developed specifically for any particular reasoning method; the reasoning methods that use the parameter 
inventory could include heuristic rules, logics, analogical reasoning on the basis of statistics, etc. 

Since LEIAs are multifunctional intelligent agents, the features used to model them cover not just language-
related material. LEIAs also routinely engage in many other aspects of cognition including, non-
exhaustively, the agent’s knowledge/beliefs about the world (ontology); its knowledge of remembered 
object, event and state instances (long-term episodic memory); the active object, event, and state instances 
comprising its situation model (working memory); its knowledge about language (including the lexicon and 
rule sets); its inventories of goals and plans; its personality traits; its cognitive biases; its physical, mental and 
emotional states; and its beliefs about all of these with respect to its interlocutors, which the agent must 
hypothesize its theory of mind, also called “mindreading” (e.g., [13]).  

3.0 LEIAS AS VIRTUAL PATIENTS 

Simulation-based training offer users the opportunity to gain extensive practical experience in a short time 
and without risk. For example, participants using the SHERLOCK II electronic troubleshooting system for 
F16 aircraft of the US Air Force were reported to have learned more in 20 hours of tutoring than in 4 years of 
field experience [14]. The Maryland Virtual Patient (MVP) system addresses the need for simulation-based 
training in the domain of clinical medicine, allowing medical trainees to develop clinical decision-making 
skills by managing a cohort of highly differentiated virtual patients in dynamic simulations, with the optional 
assistance of a virtual tutor.  

The physician-educators who conceived of MVP set down the following requirements for the developers:  

1. The system must expose students to virtual patients that demonstrate sophisticated, realistic 
behaviors, thus allowing the students to suspend their disbelief and interact naturally with them. 

2. It must allow open-ended, trial-and-error investigation – i.e., learning through self-discovery – with 
the virtual patient’s anatomy and physiology realistically adjusting to both expected and unexpected 
interventions. 

3. It must offer a large population of patients suffering from each disease, with each patient displaying 
clinically relevant variations on the disease theme; these can involve the path and rate of disease 
progression, the profile and severity of symptoms, responses to treatments, and secondary diseases 
or disorders that affect treatment choices. 

4. It must be built upon models that must: 
 
• be explanatory, both to provide transparency to the medical community who must endorse the 

system, and to provide tutorial support to students, explaining the what and why of what is 
happening. 

• integrate scientifically well-understood biological mechanisms with practical clinical knowledge 
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(population-level data, statistical evidence) to be used when causal explanations are not 
available.  

• allow these non-explanatory “clinical bridges” to be replaced by biomechanical causal chains if 
they are discovered, without perturbation to the rest of the model. 

• support automatic function and realism, without including every physiological mechanism 
known to medicine; in other words, create a useful application that does not impose the 
impossible precondition of creating a full-blown virtual human. 

• cover diseases that are both chronic and acute, and both well and poorly understood by the 
medical community. 

• allow students to have control of the clock – to advance the simulation to the next phase of 
patient management at will, thus simulating the doctor’s choices about when a patient is to come 
for a follow-up visit. 

• Optionally, offer tutoring support, parameterizable to suit student preferences.  

• allow virtual patients to make all the kinds of decisions that real patients do, such as when to see 
the doctor, whether to agree to tests and interventions, and whether to comply with the treatment 
protocol.  

The virtual patients in MVP are “double agents” in that they display both physiological and cognitive 
function, as shown by the high-level system architecture in Figure 2.6 Physiologically, they undergo both 
normal and pathological processes in response to internal and external stimuli, and show realistic responses 
both to expected and to unexpected interventions. Cognitively, they experience symptoms, have lifestyle 
preferences, can communicate with the human user in natural language, have memories of language 
interactions and simulated experiences, and can make decisions based on their knowledge of the world, their 
physical, mental and emotional states, and their current goals and plans. An optional tutoring agent provides 
advice and feedback during the simulation. The “other medical personnel” include, at present, the agents that 
carry out tests and procedures and report their results.  

 

Figure 2. MVP architecture. 

It is noteworthy that the MVP vision and modeling strategy anticipated the desiderata for virtual patient 
models detailed in the National Research Council’s 2009 joint report [15], as they were developed before 
that report was published. A short excerpt from that report illustrates the overlap: 

                                                      
6 In the realm of medical pedagogy, “virtual patients” have also been variously understood to refer to physical manikins, to live 

actors who roleplay with trainees, and to computer programs  that rely on static, prefabricated decision trees. 
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“The clinician interacts with models and abstractions of the patient that place the raw data in context... These 
virtual patient models are the computational counterparts of the clinician's conceptual model of a patient... 
[The data] depict and simulate a theory about interactions going on in the patient and enable patient-specific 
parameterization... They build on submodels of biological and physiological systems...” [15] 

MVP is a prototype system whose knowledge bases, software, and core theoretical and methodological 
foundations were developed from 2004 to 2013 (e.g., [16-23]). 

The brief description of MVP below touches upon the modeling of the virtual patient’s physiology and 
cognition and includes a sample system run, and a description of the “under the hood” traces of system 
functioning.  

3.1 The Modeling of Physiology  
Diseases are modeled as changes in the values of ontological properties over time. For each disease, a set 
number of conceptual stages is established, and typical values (or ranges of values) for each property are 
associated with each stage. Values at the start or end of each stage are recorded explicitly, with values 
between stages being interpolated. Disease models include a combination of fixed and variable features. For 
example, although the number of stages for a given disease is fixed, the duration of each stage is variable; 
similarly, although the values for some physiological properties undergo fixed changes across patients (to 
ensure that the disease manifests appropriately), the values for other physiological properties are variable 
within a specified range to allow for different instances of MVPs to differ in clinically relevant ways.  

Roughly speaking, diseases fall into two classes: those for which the key causal chains are well understood 
and can drive the simulation, and those for which the key causal chains are not known. The models for the 
latter types of diseases rely on clinical observations about what happens and when, but not why. Most 
disease models integrate both kinds of modeling strategies in different proportions.  

To develop computational cognitive models that are sufficient to support realistic patient simulations in 
MVP, a knowledge engineer leads physician-informants through the process of distilling their extensive and 
tightly coupled physiological and clinical knowledge into the most relevant subset and expressing it as causal 
chains with conditionals. Not infrequently, specialists are also called upon to formulate hypotheses about the 
unknowable, such as the preclinical (i.e., pre-symptomatic) stage of a disease and the behavior of the values 
of physiological properties between the times when tests are run to measure them. Such hypotheses are, by 
nature, imprecise. However, rather than permit this imprecision to grind agent development to a halt, we 
proceed in the same way as live clinicians do: by developing a model that is reasonable and useful, with no 
claims that it is the only model possible or that it precisely replicates human functioning. 

The selection of parameters to be included in a disease model is guided by practical considerations. 
Parameters are included because (a) they can be measured by tests, (b) they can be affected by medications 
or treatments, and/or (c) they contribute to a physician's mental model of the disease. In addition to using 
parameters that directly reflect biologically attestable properties, we also include abstract parameters that 
foster the formulation of a compact, comprehensible model.7 Such features reflect the creative aspect of 
computational modeling that is not directly extractable from print resources.  

Once an approach to modeling a disease has been devised and all requisite details have been elicited from the 
experts, the disease-related events and their participants are encoded in ontologically-grounded scripts 
written in the metalanguage of the LEIA’s ontology. MVP includes both domain scripts and workflow 
scripts. Domain scripts describe basic physiology, disease progression and responses to interventions, 

                                                      
7 These features can be likened to the inclusion of intermediate categories in ontologies: although one does not typically talk 

about WHEELED-SURFACE-VEHICLEs, this can be an appropriate node in an ontology. 
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whereas workflow scripts model the way an expert physician would handle a case, thus enabling automatic 
tutoring. 

3.2 The Modeling of Cognition in Virtual Patients 
Virtual patients need many cognitive capabilities. Their language understanding capabilities are described 
throughout this book. Their language generation involves two aspects, content and form. The content 
derives from reasoning and is encoded in ontologically grounded meaning representations.  The form is 
constructed by templates, which proved sufficient for this application. Two other necessary cognitive 
capabilities of virtual patients are learning new words and concepts, and making decisions about action, 
which we consider in turn.  

3.2.1  Learning New Words and Concepts 

Learning is often a prerequisite to making a decision. Indeed, to give just one motivating example, no patient 
– real or virtual – should agree to things like medical procedures in full ignorance of their nature and risks. 
Table 1 shows an excerpt of a sample dialog in MVP between a virtual patient (P) and the human user/doctor 
(D) that illustrates the agent’s learning of elements of ontology and lexicon as a prerequisite for informed 
decision-making.  

Table 1. Learning lexicon and ontology through dialog in MVP. 

Dialog Ontology learned Lexicon learned 

D: You have achalasia. The concept ACHALASIA is learned and 
made a child of DISEASE. 

The noun “achalasia” is learned 
and mapped to the concept 
ACHALASIA. 

P: Is it treatable?  

D: Yes. 

The value for the property TREATABLE 
in the ontological concept ACHALASIA 
is set to ‘yes’. 

 

D: I think you should have 
a Heller myotomy. 

The concept HELLER-MYOTOMY is 
learned and made a child of medical-
procedure.  Its property treatment-
option-for receives the filler heller-
myotomy. 

The noun “Heller myotomy” is 
learned and mapped to the 
concept HELLER-MYOTOMY. 

P: What is that? 

D: It is a type of 
esophageal surgery.   

The concept HELLER-MYOTOMY is 
moved in the ontology tree: it is made a 
child of surgical-procedure. Also, the 
theme of HELLER-MYOTOMY is 
specified as ESOPHAGUS. 

 

P: Are there any other 
options? 

D: Yes, you could have a 
pneumatic dilation 
instead…  

The concept PNEUMATIC-DILATION is 
learned and made a child of MEDICAL-
PROCEDURE. 

The noun “pneumatic dilation” 
is learned and mapped to the 
concept PNEUMATIC-DILATION. 
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D: (cont.) which is an 
endoscopic procedure. 

PNEUMATIC-DILATION is moved from 
being a child of MEDICAL-PROCEDURE 
to being a child of ENDOSCOPY. 

 

P: Does it hurt? 

D: Not much.  

The value of the property PAIN-LEVEL 
in PNEUMATIC-DILATION is set to .2 (on 
a scale of {0-1}).  

 

 

When the virtual patient processes each of the doctor’s utterances, it automatically creates text meaning 
representations that it then uses for reasoning and learning. The text meaning representation for the first 
sentence is ACHALASIA-1 (EXPERIENCER HUMAN-1). The patient knows to make the newly learned concept 
ACHALASIA a child of DISEASE in the ontology because the lexical sense it uses to process the input “You 
have X” asserts that X is a disease. This sense is prioritized over other transitive meanings of the verb ‘have’ 
because the discourse context is a doctor’s appointment and the speaker is a doctor. A similar type of 
reasoning suggests that a Heller myotomy is a kind of MEDICAL-PROCEDURE. Our short dialog also shows 
two examples of belief revision: when the virtual patient learns more about the nature of the procedures 
HELLER-MYOTOMY and PNEUMATIC-DILATION, it selects more specific parents for them, thereby permitting 
the inheritance of more specific property values.  

3.3  Making Decisions About Action 
Virtual patients carry out dynamic decision-making in a style that approximates human decision-making, 
most notably because the agents’ decisions are explanatory. Whenever a decision needs to be made, the 
virtual patient first determines whether it has sufficient information to make it – an assessment that is based 
on a combination of what it actually knows, what it believes to be necessary for making a good decision, and 
its personality traits. If it lacks some decision-making knowledge, it can posit the goal of obtaining this 
knowledge, which is a metacognitive behavior that leads to learning. Formally speaking, a goal is an 
ontological instance of a property, whose domain and range are specified. Goals can appear on the agenda in 
four ways:  

• Perception via interoception. The moment the patient perceives a symptom, the symptom appears 
in its short-term memory. This triggers the addition of an instance of the goal BE-HEALTHY onto the 
agenda. We assume that achieving the highest possible value of BE-HEALTHY (1 on the abstract 
scale {0,1}) is a universal goal of all humans and, in cases in which it seems that a person is not 
fulfilling this goal, he is simply prioritizing another goal, such as experience-pleasure.  

• Perception via language. Any user input that requires a response from the virtual patient (e.g., a 
direct or indirect question) puts the goal to respond to it on the agenda.  

• A precondition of an event inside a plan is unfulfilled. For example, most patients will not agree 
to an intervention about which they know nothing. So, one of the events inside the plan of decision-
making about an intervention is finding out whichever features of it are of interest to the individual.  

• A predetermined period of time has passed since the latest instances of the events BE-
DIAGNOSED or BE-TREATED have been launched. This models regular check-ups and scheduled 
follow-up visits for virtual patients.  

The goal BE-HEALTHY is put on the agenda when a virtual patient begins experiencing a symptom (this is 
made manifest by a signal from the agent’s physiology model via interoception). It remains on the agenda 
and is reevaluated when: (a) its intensity or frequency (depending on the symptom) reaches a certain level; 
(b) a new symptom arises; or (c) a certain amount of time has passed since the patient’s last evaluation of its 
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current state of health, given that the patient has an ongoing or recurring symptom or set of symptoms: e.g., 
“I’ve had this mild symptom for too long; I should see a doctor.”  

When making decisions about its health care, the virtual patient incorporates the following types of features, 
which are used in the decision functions described below.  

(a) its physiological state, as perceived via interoception and remembered in its memory – particularly 
the intensity and frequency of symptoms. It is important to note that neither the patient nor the 
virtual tutor in the MVP system are omniscient about the patient’s physiological state; the simulation 
system knows this, but the intelligent agents, in accordance with the objective of making them 
human-like, do not.   

(b) certain character traits: TRUST, SUGGESTIBILITY and COURAGE (the inventory can in principle be 
modified to suit a particular personality theory in use) 

(c) certain physiological traits: PHYSIOLOGICAL-RESISTANCE, PAIN-THRESHOLD, and ABILITY-TO-
TOLERATE-SYMPTOMS (i.e., how intense or frequent symptoms have to be before the patient feels 
the need to do something about them)  

(d) certain properties of tests and procedures: PAIN, UNPLEASANTNESS, RISK and EFFECTIVENESS. PAIN 
and UNPLEASANTNESS are considered typical side effects when viewed at the population level; the 
patient’s personal individual experience of them is described below.  

(e) two time-related properties: the FOLLOW-UP-DATE, i.e., the time the doctor told the patient to come 
for a follow-up, and CURRENT-TIME, the time of a particular interaction.  

 

Most of these properties are scalar attributes whose values are measured on the abstract scale {0,1}. The 
values for all subjective features, (a) – (c), are selected for each instance of virtual patient by the patient 
author. That is, at the same time as a patient author selects the physiological traits of the patient – like the 
pace of disease progression and the patient’s response to treatments if they are administered – he selects 
certain traits specific to the cognitive agent as well as the amount of relevant world knowledge that the 
patient has in its ontology. Two decision functions, written in a simplified pseudocode, will suffice for 
illustration. 

Decision Function 1: see-MD-or-do-nothing. This function decides when a patient goes to see the doctor, 
both initially and for follow-up visits.  

IF  FOLLOW-UP-DATE is not set 

 AND SYMPTOM-SEVERITY > ABILITY-TO-TOLERATE-SYMPTOMS 

THEN SEE-MD          ; this triggers the first visit to the doctor 

ELSE IF FOLLOW-UP-DATE is not set 

              AND SYMPTOM-SEVERITY < ABILITY-TO-TOLERATE-SYMPTOMS  

             AND the symptom has persisted > 6 months  

THEN SEE-MD     ; a tolerable symptom has been going on for too long  

ELSE IF there was a previous visit 

  AND at the time of visit symptom-severity <=.3 



Two Types of Autonomous, Language Endowed                                                                  
Learning Agents for Human Autonomy Teaming 

STO-MP-HFM-300 12 - 11 

  AND SYMPTOM-SEVERITY > .7 
  AND [SYMPTOM-SEVERITY – ABILITY-TO-TOLERATE-SYMPTOMS] > 0  

THEN SEE-MD 

ELSE IF there was a previous visit 

 AND at the time of visit SYMPTOM-SEVERITY ∈{.3 .7}  

 AND currently SYMPTOM-SEVERITY > .9 

 AND [SYMPTOM-SEVERITY – ABILITY-TO-TOLERATE-SYMPTOMS] > 0  

THEN SEE-MD         ; there was a big increase in symptom triggering an unplanned visit to MD  

ELSE IF there was a previous visit 

         AND at the time of visit SYMPTOM-SEVERITY > .7 

AND currently SYMPTOM-SEVERITY > .8 

THEN DO-NOTHING ; symptom severity was already high at last visit 

ELSE IF CURRENT-TIME ≥ FOLLOW-UP-VISIT.TIME  

THEN SEE-MD   ; go to the previously scheduled visit 

ELSE DO-NOTHING  

 

As should be clear, given the same symptom level, patients with a lower ability to tolerate symptoms will see 
the doctor earlier in the disease progression than patients with a higher ability to tolerate symptoms. Of 
course, one could incorporate any number of other character traits and lifestyle factors into this function, 
such as the patient’s eagerness to be fussed over by doctors, the patient’s availability to see a doctor around 
its work schedule, and so on. But even this inventory allows for considerable variability across patients 
(which is an objective of the entire training set-up). 

Evaluation Function 2: EVALUATE-INTERVENTION. Among the decisions a patient must make is whether 
or not to agree to a test or treatment procedure suggested by the doctor, since many interventions carry some 
degree of pain, risks, side-effects or general unpleasantness. Some patients are endowed with such high 
levels of trust, suggestibility and courage in their personality profile that they will agree to anything the 
doctor says without question. All other patients must decide if they have sufficient information about the 
intervention to make a decision and, once they have enough information, they must decide whether they 
want to (a) accept the doctor’s advice, (b) ask about other options, or (c) reject the doctor’s advice. A 
simplified version of the algorithm for making this decision (which suffices for our purposes) can be stated 
informally as follows:  
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IF a function of the patient’s trust, suggestibility and courage is above a threshold  

    OR the risk associated with the intervention is below a threshold (e.g., in the case, for a blood 
test)  

THEN the agent agrees to intervention right away.  

ELSE [*] IF the patient feels it knows enough about the risks, side-effects and unpleasantness of 
the 

               intervention (as a result of evaluating the function DETERMINE-IF-ENOUGH-INFO-TO-
EVALUATE)  

               AND a call to the function EVALUATE-INTERVENTION establishes that the above risks  
               are acceptable  

THEN the patient agrees to the intervention.  

ELSE IF the patient feels it knows enough about the risks, side-effects and unpleasantness  
            of the intervention  

            AND a call to the function evaluate-intervention establishes that the above risks  
            are not acceptable  

THEN IF there are other options 
 THEN the physician proposes them and control is switched to [*]. 
 ELSE the patient refuses the intervention. 

 ELSE IF the patient does not feel it knows enough about the intervention (as a result of evaluating  
            the function DETERMINE-IF-ENOUGH-INFO-TO-EVALUATE)  

THEN the patient asks for information about the specific properties that interest it, based on its   
            personality traits: e.g., a cowardly patient will ask about risks, side-effects and 
unpleasantness,      
            whereas a brave but sickly person might only ask about side-effects.  

IF a call to the function evaluate-intervention establishes that the above risks are acceptable 
THEN the patient agrees to the intervention 
ELSE the patient asks about availability of other options  

IF other options are available 
   THEN the physician proposes them and control is switched to [*].  

   ELSE the patient refuses the intervention.  

This decision function makes use of two other decision functions which we do not detail here, EVALUATE-
INTERVENTION and DETERMINE-IF-ENOUGH-INFO-TO-EVALUATE (see Nirenburg et al. 2008 for details), as 
the point was a) to show the kinds of decisions virtual patients make, b) their approach to knowledge-based 
decision-making, and c) the kinds of dialog that must be supported to simulate the necessary interactions.  
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3.4 An Example System Run 
To illustrate system operation, we present a sample user interaction with a virtual patient named Michael 
Wu. “Sample” is the key word here, as there are several substantively different – and countless trivially 
different – paths that this simulation could take based on what the user chooses to do during the interaction 
session. For example, users could choose different points in the dialog to offer clinically appropriate (or 
inappropriate!) interventions, or do nothing at all; they could ask the patient to come back for frequent or 
infrequent follow-ups; they could order appropriate or inappropriate tests; and they could have the tutor set 
to intervene frequently or only in cases of imminent mistakes – or not at all. Since Mr. Wu is a particular 
instance of a virtual patient, he has an inventory of property values that define him, This put some 
constraints on the available outcomes of the simulation. At the start of the process, Mr. Wu’s physiological, 
pathological, psychological, and cognitive profiles are specified as follows:8  

• Psychological Traits: trust [.2], suggestibility [.3], courage [.4] 

• Physiological Traits: physiological resistance [.9], pain threshold [.2], ability to tolerate symptoms 
[.4]  

• Patient’s knowledge of medicine: minimal 

• Disease(s) explicitly authored for this patient:9 Achalasia 

• Response to treatments if they are launched: BoTox [effective, wearing off over 12 mos.], 
Pneumatic dilation [effective with regression], Heller myotomy [effective permanently] 

 

The system user, who plays the role of attending physician, does not have direct access to any of this 
information and must learn everything about Mr. Wu through dialog, tests, and procedures. When the 
simulation clock is launched, the user must wait for Mr. Wu to present at the doctor’s office. Mr. Wu makes 
this decision using the decision function of Section 3.3. The points below describe what happens in this 
simulation run. 

1. Mr. Wu presents with the chief complaint “difficulty swallowing”. This is Day 361 of the progression of 
his disease, which includes the preclinical stage and a portion of the first symptomatic stage. The user 
will not know this temporal information. Mr. Wu has had symptoms for some time but until now the 
evaluation function SEE-DOCTOR-OR-DO-NOTHING has returned the answer “do nothing.” 

 

2. When the virtual patient presents at the office, this initiates the first dialog with the user. The user types 
in unconstrained English text (note the extensive use of difficult to automatically analyze elliptical 
expressions). The virtual patient analyzes it into TMRs, makes a decision about how to answer, and 
generates a response. The interaction begins as follows:  

 

User:  So, you have difficulty swallowing? 
Mr. Wu: Yes. 
User:   Do you have difficulty swallowing solid food?  

Mr. Wu: Yes. 
User:  Liquids? 
Mr. Wu: No. 

                                                      
8 Both manual and automatic methods of creating virtual patient instances have been implemented in MVP, see (REFs). 
9 Diseases can also be automatically triggered if their preconditions are met.  
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User:  Do you have chest pain? 
Mr. Wu: Yes, but it’s mild. 
User:  Any heartburn? 
Mr. Wu: No. 
User:  Do you ever regurgitate your food?  

Mr. Wu: No. 
User:   How often do you have difficulty swallowing? 
Mr. Wu:  Less than once a week.  

              User:   It is too early to take any action. Please come back in 9 months.  

              Mr. Wu:  OK.  

 

As we see, the user decides to do nothing – an important kind of decision in clinical medicine, and one that is 
difficult to teach since a physician’s natural response to a patient asking for help is to do something.  
 

3. After 9 months (on Day 661 of the disease progression) Mr. Wu comes back for his follow-up. He has 
regularly been running the evaluation function SEE-DOCTOR-OR-DO-NOTHING (since he is still 
symptomatic), but it always returned “do nothing” – i.e., do not schedule a new appointment prior to the 
scheduled follow-up. The user again asks about his difficulty swallowing, chest pain and regurgitation, 
using paraphrases of the original formulations (for variety and, in system demonstrations, to show that 
this is handled well by the NLU component). Mr. Wu responds that he has moderate chest pain, 
experiences regurgitation a few times a week, has difficulty swallowing solids daily and difficulty 
swallowing liquids occasionally. Note that the progression of difficulty swallowing from solids to liquids 
is a key diagnostic point that the user should catch: this suggests a motility disorder rather than an 
obstructive disorder. 

 

4. The user posits the hypothesis that Mr. Wu has a motility disorder and advises Mr. Wu to have a test 
called EGD (esophagogastroduodenoscopy). Mr. Wu evaluates whether he will accept this advice using 
the function EVALUATE-INTERVENTION, described in Section 3.3. Since he is concerned about the risks, 
he asks about them. When the user assures him that they are extremely minimal, he agrees to the 
procedure.  

 

5. A specialist lab technician agent virtually runs the test and delivers the results. This involves querying 
the physiological model underlying the simulation at the given point in time. The specialist agent returns 
the results with the interpretation: “Narrowing of LES with a pop upon entering the stomach. No tumor 
in the distal esophagus. Normal esophageal mucosa.” These results include both positive results and 
pertinent negatives.  

 

6. The user reviews the test results, decides that it is still too early to intervene, and schedules Mr. Wu for 
another follow-up in 4 months.  

 

7. When Mr. Wu presents in 4 months, he reports that the symptom that has changed the most is 
regurgitation, which he now experiences every day. Note that throughout the simulation the patient chart 
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is automatically populated with responses to questions, results of tests, etc., so the user can compare the 
patient’s current state with previous states at a glance.  

 

8. The user suggests having another EGD and Mr. Wu agrees immediately, not bothering to launch the 
evaluation function for EGD again since he agreed to it the last time.  

 

9. Then the user suggests having two more tests: a barium swallow and esophageal manometry. Mr. Wu 
asks about their risks (that remains his only concern about medical testing), is satisfied that they are 
sufficiently low, and agrees to the procedures. The former returns “Narrowing of the lower esophageal 
sphincter with a bird’s beak” and the latter returns “Incomplete relaxation of the LES, hypertensive LES, 
LES pressure: 53”.  

 

10. The user decides that these test results are sufficient to make the diagnosis of achalasia. The user records 
this diagnosis in Mr. Wu’s chart.  

 

11. The user suggests that Mr. Wu have a Heller myotomy. Mr. Wu asks about the risks and pain involved. 
The user responds that both are minimal. Mr. Wu agrees to have the procedure. The user tells him to 
come back for a follow-up a month after the procedure.  

 

12. Mr. Wu has the procedure.  
 

13. Mr. Wu returns in a month, the user asks questions about symptoms and there are none. The user tells 
Mr. Wu to return if any symptoms arise.  

4.0 INTEGRATING LEIAS WITH ROBOTS 

The main purpose of this section is to illustrate how an OntoAgent-based LEIA integrated within a robotic 
system can learn in a dialog with its human team member. Two characteristics set this system apart from the 
few recent systems that actually address aspects of extracting and representing linguistic meaning [5, 13]. 
First, it simultaneously addresses the challenges of a) learning-oriented language-based human-robotic 
interaction, b) symbol grounding, c) linguistic meaning extraction, and d) the enhancement and management 
of the episodic, semantic and procedural memory of a robot/agent. Second, the language processing 
component of the system and its associated knowledge resources address a broader set of meaning-related 
language phenomena, described at a finer grain-size of analysis than that used in other approaches.  To 
implement language-based learning in a social robotics environment, we must address the co-dependence 
among three capabilities: language understanding, learning, and task-oriented physical, mental and verbal 
action. Language understanding and action require knowledge, while learning, achieved through language 
understanding and reasoning, automatically adds to that knowledge.  

The system we describe is a social robot collaborating with a human user. The experimental domain is 
furniture assembly (e.g., [24]), widely accepted as useful for demonstrating human-robot collaboration on a 
joint activity. Roncone et al. [25] report on a Baxter robot supplied with high-level specifications, 
represented in the HTN formalism [26], of basic actions implementing chair-building tasks. Using a 
keyboard command or pressing a button, the user could trigger the execution of basic actions by triggering 
the operation of low-level task planners that the robot could directly execute. The robot could not reason 
about its actions, which were stored in its procedural memory as uninterpreted skills. The system described 
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here integrates the robotic architecture of [25] with the OntoAgent cognitive architecture [e.g., 5]. The 
integrated system allows the robot to a) learn the semantics of initially uninterpreted basic actions; b) learn  
the semantics of operations performed by the robot’s human collaborator when they are described in natural 
language; c) learn, name and reason about meaningful groupings and sequences of actions and organize them 
hierarchically; and d) integrate the results of learning with knowledge stored in its semantic and episodic 
memory and establish their connections with the robot’s procedural memory.  

The core prerequisite for human-like learning is the ability to automatically extract, represent and use the 
meaning of natural language texts – utterances, dialog turns, etc. This task is notoriously difficult: to 
approach human-level capabilities, intelligent agents must account for both propositional and discourse 
meaning; interpret both literal and non-literal (e.g., metaphorical) meaning; resolve references; interpret 
implicatures; and, particularly in informal genres, deal with stops and starts, spurious repetitions, production 
errors, noisy communication channels and liberal (if unacknowledged) use of the least effort principle (e.g., 
[27]) by speakers and hearers. The language understanding module of OntoAgent, OntoSem [9], uses an 
ontology (semantic memory) of some 9,000 concepts with an average of 16 properties each; an episodic 
memory of remembered instances of ontological concepts; a semantic lexicon for English covering about 
25,000 lexical senses; and a frame-oriented formalism suitable for representing the semantics of robotic 
actions, natural language utterances and results of the robot’s processing of other perceptual modalities (e.g., 
interoception, [5]).  

The Process. At the beginning of the learning process, the robot can a) visually recognize parts of the future 
chair (e.g., the seat and the tool (screwdriver) to be used, b) generate meaning representations (MRs) of user 
utterances and physical actions and c) perform basic programmed actions: GET(OBJECT) from storage area to 
workspace, HOLD(OBJECT) and RELEASE(OBJECT). The user teaches the robot three types of things 
(implemented in three learning modules of Figure 3): a) concept grounding: the connection between basic 
actions and MRs of utterances that describe them; b) legal sequences of basic actions forming complex 
actions; and c) augmenting the robot’s memory with descriptions of newly learned complex actions and 
objects.  

Suppose the user issues the call for the robot to execute get(screwdriver) and the utterance Now you will 
fetch a screwdriver. The physical-conceptual grounding learning module (LM) will link this procedure call 
with the representation of CHANGE-LOCATION-1 in the MR that OntoSem produces for the example utterance 
(Figure 4), thus linking the robotic and the cognitive architectures. This is done by adding the property PM-
LINK with the filler GET(SCREWDRIVER) to the ontological concept instance CHANGE-LOCATION-1. The 
immediate purpose of this linking of the robotic and the cognitive architectures is to make the robot capable 
in its subsequent functioning to a) trigger basic actions autonomously on the basis of language input alone 
and b) learn complex event sequences by just being told, without having to actually perform the actions 
comprising the complex event.  

 

Figure 3. The core learning process. Input is a sequence of user verbal actions (UVAs) which 
explain user physical actions (UPAs) and issue commands to the robot, thus verbalizing robot’s 

physical actions (RPAs), which facilitates grounding the former in the latter. UVAs are 
interpreted into uniform meaning representation and provide input to grounding, process 
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network and concept/property learning modules (LMs). The memory management module 
(MMM) incorporates the results of learning into the episodic and semantic memories of the robot 

and mutually grounds RPAs in the robot's procedural memory and corresponding concepts in 
its semantic memory.    

The robot can learn legal sequences of basic actions by understanding the 
user’s utterances in their context. The robot organizes action sequences 
hierarchically and makes sure that any non-terminal nodes in the resulting 
process network represent meaningful complex actions. If the robot does not 
have specifications for these complex actions in its stored knowledge, it learns 
new concepts for them, on the basis of the MRs obtained by processing the 
relevant user utterances. We treat joint tasks as complex tasks and require the 
system to decompose them into subtasks carried out by each of the team 
members. Basic individual tasks include Robot Physical Actions (RPAs), User 
Physical Actions (UPAs) and User Verbal Actions, UVA. The RPAs and 
UPAs appear as terminal nodes in the process network being learned. The 
robot’s activity that includes all the kinds of learning it does as well as 
updating its memory structures comes under the rubric of Robot Mental 
Action, RMA. Due to space constraints we cannot illustrate a complete process 
of assembling a chair (even the shortest version of the process numbers over 
150 steps). So, we present a small subset of this process – assembling the third 
of the four legs of the chair – accompanied by associated robotic learning, as 
illustrated in Table 2. All UVAs are first analyzed and their meanings are 
represented as MRs. UVA1 signals the beginning of the subsequence and, 
together with UVA7, marks the boundaries of the complex action. All the 

RPAs and the UPA occurring within this span, in the order of their occurrence, will form the set of the 
terminal nodes in the subset of the overall process network, becoming children of the non-terminal 
designating the complex action of building the right back leg. Once this (sub)hierarchy is constructed, the 
non-terminal node at its root must be named. As the robot assembles the back leg for the first time, it learns 
the composition of this complex action (RMA1) and labels the parent node of this small subhierarchy with 
the name of the concept ASSEMBLE-RIGHT-BACK-LEG. It also learns the new object-type concept RIGHT-
BACK-LEG, whose existence is the effect of the above action (RMA2) and updates the concept chair by 
adding right-back-leg as a filler of that concept’s HAS-OBJECT-AS-PART property (RMA3). The newly 
learned concepts are illustrated in Figure 5. The results of the operation of the process network LM are 
recorded in the HAS-EVENT-AS-PART property of a result of the operation of the concept LM. At this stage in 
the process, the fillers of some of the properties in the concepts are tentative and are expected to be 
modified/tightened at the memory management stage.  

Memory management. Knowledge learned by the robot during each session with a human trainer (such as 
the sequence in Table 2) must be remembered so they can be used in subsequent functioning. Mutual 
grounding of basic actions and corresponding ontological events is recorded both in the robot’s procedural 
memory (by augmenting the procedures implementing the robot’s basic motor actions with links to their 
corresponding concepts in semantic memory) and in its semantic memory (by adding PM-LINKS, see above).  

 

 

 

 

SPEECH-ACT-1 
    type            command 
   scope              CHANGE-LOCATION-1 
   producer     *speaker* 
   consumer ROBOT-0   
   time              time-0 ; time of speech 
CHANGE-LOCATION-1 
   agent                                   ROBOT-0 
   theme                      SCREWDRIVER-1 
   effect                      BESIDE  
                                         (AGENT.LOCATION  
                                            THEME.LOCATION) 
    time                                    > time-0 
    token                                        fetch 
    from-sense                         move-v2 
HUMAN-1 
    agent-of         CHANGE-LOCATION-1 
    token                                          you 
    from-sense                            you-n1 
SCREWDRIVER-1 
    theme-of        CHANGE-LOCATION-1 
    token                             screwdriver 
    from-sense               screwdriver-n1 

Figure 4. Meaning representation 
for the utterance Now you will 
fetch a screwdriver (simplified).  
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Table 2. Assembling the right back leg  

 

Newly learned process sequences and objects (such as ASSEMBLE-RIGHT-BACK-LEG and RIGHT-BACK-LEG of 
Figure 5) must be incorporated in the robot’s long-term semantic and episodic memories. Due to space 
constraints, in what follows we give an informal description of the process.  

For each newly learned concept, the memory management module (MMM) first determines whether this 
concept should be a) added to the robot’s semantic memory or b) merged with an existing concept. To make 
this choice, the MMM uses an extension of the concept matching algorithm of [28-29]. This algorithm is 
based on unification, with the added facility for naming concepts and determining their best position in the 
hierarchy of the ontological world model in the robot’s long-term semantic memory.  

ASSEMBLE-RIGHT-BACK-LEG 
 IS-A   PHYSICAL-EVENT 
 AGENT   HUMAN, ROBOT 
 THEME   RIGHT-BACK-LEG 
 INSTRUMENT  SCREWDRIVER 
 HAS-EVENT-AS-PART GET(ROBOT, BRACKET-FOOT)  
    RELEASE(USER, BRACKET-FOOT)  
    GET(ROBOT, BRACKET-BACK-RIGHT)  
    RELEASE(USER, BRACKET-BACK-RIGHT) 
    GET(ROBOT, DOWEL) 
    HOLD(ROBOT, DOWEL) 
    MOUNT(USER, {BRACKET-FOOT, BRACKET-BACK-RIGHT}, DOWEL) 
    PART-OF-EVENT  ASSEMBLE-CHAIR 
    EFFECT   RIGHT-BACK-LEG     //default effects are events; if filler of effect is an object, this means the effect is its existence

                                                                                                                
RIGHT-BACK-LEG 
 IS-A   CHAIR-PART 
 HAS-OBJECT-AS-PART BRACKET-FOOT, BRACKET-BACK-RIGHT, DOWEL 
 PART-OF-OBJECT  CHAIR 

Figure 5. Concepts learned as a result of processing the sequence in Table 2.  

As an illustration, suppose, the concept matching algorithm has determined that the newly learned concept 
ASSEMBLE-RIGHT-BACK-LEG must be added to the robot’s semantic memory. In this case, the algorithm also 
suggests the most appropriate position for the concept in the ontological hierarchy. This is determined by 
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comparing a) the inventory and b) sets of fillers of the properties defined for the new concepts and for the 
potential parents of the new concepts in the ontological hierarchy. In the example illustrated in Figure 5, the 
LM used the safest, though the least informative, filler (PHYSICAL-EVENT) for the IS-A property of 
ASSEMBLE-RIGHT-BACK-LEG. To determine the appropriate parent, the algorithm traverses the ontological 
hierarchy from PHYSICAL-EVENT down until it finds the closest match that does not violate recorded 
constraints (see REF for a description of the possible eventualities that this process can encounter).  

 
RIGHT-BACK-LEG 
     IS-A           CHAIR-PART 
 HAS-OBJECT-AS-PART BRACKET-FOOT,   

                                         DOWEL 
        PART-OF-OBJECT          CHAIR 

FIGURE 6. A possible existing ontological concept RIGHT-BACK-LEG 

RIGHT-BACK-LEG 
         IS-A            SOFA-PART 
         HAS-OBJECT-AS-PART BRACKET-FOOT,   
                                                   DOWEL 
         PART-OF-OBJECT          SOFA 

FIGURE 7. Another possible existing ontological concept RIGHT-BACK-LEG 

Suppose now that a concept RIGHT-BACK-LEG already exists in the ontology. If this concept is described as 
in Figure 6, then after comparing this concept with the newly learned concept (see Table 2), the MMM will, 
instead of adding a new (possibly renamed) concept to the robot’s semantic memory, just add an optional 
filler BRACKET-BACK-RIGHT to the HAS-OBJECT-AS-PART property of the existing concept of Figure 6, thus 
merging the existing and the newly learned knowledge. If, however, the existing concept is as illustrated in 
Figure 7, then, because of the mismatch of the fillers of PART-OF properties between the newly learned and 
the standing concept, the MMM will yield two new concepts, as illustrated in Figure 8, and create a new 
common parent concept RIGHT-BACK-LEG for them. 

 
RIGHT-BACK-LEG-CHAIR    RIGHT-BACK-LEG-SOFA 
  IS-A                         CHAIR-PART                                                                  IS-A    SOFA-PART      
  HAS-OBJECT-AS-PART   BRACKET-FOOT,         HAS-OBJECT-AS-PART BRACKET-FOOT,   
                                              DOWEL,        DOWEL 
                                              BRACKET-BACK-RIGHT                                               PART-OF-OBJECT         SOFA 
  PART-OF-OBJECT            CHAIR         

FIGURE 8. Two new concepts RIGHT-BACK-LEG 

Note the need of modifying the names of the concepts. An important case of merging several versions of a 
concept in one representation is the system’s ability to represent the content of an action’s HAS-EVENT-AS-
PART property as an HTN, augmented with the means of expressing temporal ordering, optionality and valid 
alternative action sequences. Semantic memory stores the robot’s knowledge of concept types. So, for 
example, it will contain a description of what the robot knows about chairs and chair legs. This knowledge 
will be used to feed the reasoning rules the robot will use while processing language, learning and making 
decisions. To make the robot more human-like, we also support reasoning by analogy. For this purpose, the 
MMM records sequences of RPAs, UPAs and UVAs that the robot represents and carries out during specific 
sessions of interacting with specific users in the robot’s long-term episodic memory. The contents of the 
episodic memory will also support the robot’s ability to “mind-read” its various users [e.g., [13, 28] and, as a 
result, to be able to anticipate their needs at various points during joint task execution as well as interpret 
their UVAs with higher confidence. 

The system briefly described here concentrates on robotic learning through language understanding. This 
learning results in extensions to and modifications of the three kinds of robotic memory – the explicit 
semantic and episodic memory and the implicit (skill-oriented) procedural memory. The expected practical 
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impact of the ability to learn and reason will include the robot’s ability to a) perform complex actions 
without the user having to spell out a complete sequence of basic and complex actions; b) reason about task 
allocation between itself and the human user; and c) test and verify its knowledge through dialog with the 
user, avoiding the need for large numbers of training examples required by learning by demonstration only. 
The inability of the state-of-the-art deep learning-based systems to provide human-level explanations is a 
well-known constraint on the utility of such systems.  The cognitive robots we develop will still be capable 
of sophisticated reasoning by analogy but will be also capable of explaining their decisions and actions. 
Finally, our approach to learning does not depend on the availability of “big data” training materials. Instead, 
we model the way people learn since early childhood and throughout their lives – by being taught using 
natural language.   

An important contribution of our work is overt modeling of the robot’s memory components. These 
components include an implicit memory of skills and explicit memories of concepts (objects, events and 
their properties) and of instances of sequences of events (episodes, represented in our system as hierarchical 
transition networks, HTNs). The link established between the implicit and explicit layers of memory allows 
the robot to reason about its own actions. Scheutz et al. [30] discuss methodological options for integrating 
robotic and cognitive architectures and propose three “generic high-level interfaces” between them – the 
perceptual interface, the goal interface and the action interface. In our work, the basic interaction between the 
implicit robotic operation and explicit cognitive operation is supported by interactions among the three 
components of the memory system of the robot. 

The first enhancement of the current learning system will consist in demonstrating how, after RPAs are 
mutually grounded in ontological concepts, the robot will be able to carry out commands or learn new action 
sequences by acting on UVAs, without any need for direct triggering through software function calls or 
hardware operations. Next, we intend to add text generation capabilities, both to allow the robot a more 
active role in the learning process (by asking questions) and to enrich interaction during joint task 
performance with a human user. Another novel direction of work will involve adapting to particular users – 
modeling robots’ individuality and related phenomenological (“first-person” view) aspects of its internal 
organization and memory, developing and making use of mindreading capabilities that will in turn facilitate 
experimentation in collaboration among agents with different “theories of minds of others,” similarly to the 
capability present in the MVP implementation of OntoAgent-based LEIAs. 

5.0 FINAL WORDS 

We have successfully used the infrastructure of OntoAgent in two very different applications of language-
endowed intelligent agents.  The MVP involves a disembodied virtual patient agent capable of interacting 
with the human user in a manner approaching the human level. The virtual patients are also supplied with a 
simulated physiology and pathology, formulated using the standard representation substrate of OntoAgent. 
This demonstrates that OntoAgent can successfully address issues beyond language processing, specifically, 
integrate different modes of perception. In the case of MVP, language inputs are integrated with inputs from 
interoception, made possible by the presence of the physiology model.  

The knowledge structures in OntoAgent facilitate not only perception but also reasoning and decision-
making, implemented mostly in the framework of goal- and plan-oriented functioning but also attempting to 
account for reactive actions. It is important to note that our environment can accept a variety of realizations 
of goal- and plan-based decision-making, which means that our general tendency is to be task-oriented rather 
than method-oriented. Thus, for MVP we developed both the classical rule-based decision procedures (such 
as those illustrated in Section 3.3 above) and decision procedures based on Bayesian networks.  

In the process of integrating LEIAs with robots, we have demonstrated a way to integrate cognitive and 
robotic architectures and thus add physical (motor) actions to the repertoire of LEIAs that are already 
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capable of verbal and mental (remembering, learning, making decisions) actions.  

The knowledge substrate that facilitates LEIAs is not trivial. However, we have demonstrated that once a 
core knowledge bases (ontology, lexicon, belief repository structures, goal and plan inventories, decision 
functions, etc.) have already been developed, adaptation to new domains can proceed with moderate resource 
allocation.  

The overall approach we have briefly described here follows the premise that the only way to attain human-
level functioning for autonomous entities operating in teams with people is to have these entities model both 
what people do and how they understand, reason, make decisions and operate. The vast majority of current 
AI follows the former goal. To fully succeed, the field must return to seriously taking into account the latter.  
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